An operator view of policy gradient methods

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Dibya Ghosh, Marlos C. Machado, Nicolas Le Roux


We cast policy gradient methods as the repeated application of two operators: a policy improvement operator $\mathcal{I}$, which maps any policy $\pi$ to a better one $\mathcal{I}\pi$, and a projection operator $\mathcal{P}$, which finds the best approximation of $\mathcal{I}\pi$ in the set of realizable policies. We use this framework to introduce operator-based versions of well-known policy gradient methods such as REINFORCE and PPO, which leads to a better understanding of their original counterparts. We also use the understanding we develop of the role of $\mathcal{I}$ and $\mathcal{P}$ to propose a new global lower bound of the expected return. This new perspective allows us to further bridge the gap between policy-based and value-based methods, showing how REINFORCE and the Bellman optimality operator, for example, can be seen as two sides of the same coin.