Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback Bibtex MetaReview Paper Review Supplemental

Authors

Edouard Leurent, Odalric-Ambrym Maillard, Denis Efimov

Abstract

We consider the problem of robust and adaptive model predictive control (MPC) of a linear system, with unknown parameters that are learned along the way (adaptive), in a critical setting where failures must be prevented (robust). This problem has been studied from different perspectives by different communities. However, the existing theory deals only with the case of quadratic costs (the LQ problem), which limits applications to stabilisation and tracking tasks only. In order to handle more general (non-convex) costs that naturally arise in many practical problems, we carefully select and bring together several tools from different communities, namely non-asymptotic linear regression, recent results in interval prediction, and tree-based planning. Combining and adapting the theoretical guarantees at each layer is non trivial, and we provide the first end-to-end suboptimality analysis for this setting. Interestingly, our analysis naturally adapts to handle many models and combines with a data-driven robust model selection strategy, which enables to relax the modelling assumptions. Last, we strive to preserve tractability at any stage of the method, that we illustrate on two challenging simulated environments.