Bayesian Robust Optimization for Imitation Learning

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Daniel Brown, Scott Niekum, Marek Petrik

Abstract

<p>One of the main challenges in imitation learning is determining what action an agent should take when outside the state distribution of the demonstrations. Inverse reinforcement learning (IRL) can enable generalization to new states by learning a parameterized reward function, but these approaches still face uncertainty over the true reward function and corresponding optimal policy. Existing safe imitation learning approaches based on IRL deal with this uncertainty using a maxmin framework that optimizes a policy under the assumption of an adversarial reward function, whereas risk-neutral IRL approaches either optimize a policy for the mean or MAP reward function. While completely ignoring risk can lead to overly aggressive and unsafe policies, optimizing in a fully adversarial sense is also problematic as it can lead to overly conservative policies that perform poorly in practice. To provide a bridge between these two extremes, we propose Bayesian Robust Optimization for Imitation Learning (BROIL). BROIL leverages Bayesian reward function inference and a user specific risk tolerance to efficiently optimize a robust policy that balances expected return and conditional value at risk. Our empirical results show that BROIL provides a natural way to interpolate between return-maximizing and risk-minimizing behaviors and outperforms existing risk-sensitive and risk-neutral inverse reinforcement learning algorithms.</p>