Projected Stein Variational Gradient Descent

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Peng Chen, Omar Ghattas


<p>The curse of dimensionality is a longstanding challenge in Bayesian inference in high dimensions. In this work, we propose a {projected Stein variational gradient descent} (pSVGD) method to overcome this challenge by exploiting the fundamental property of intrinsic low dimensionality of the data informed subspace stemming from ill-posedness of such problems. We adaptively construct the subspace using a gradient information matrix of the log-likelihood, and apply pSVGD to the much lower-dimensional coefficients of the parameter projection. The method is demonstrated to be more accurate and efficient than SVGD. It is also shown to be more scalable with respect to the number of parameters, samples, data points, and processor cores via experiments with parameters dimensions ranging from the hundreds to the tens of thousands. </p>