A Bayesian Nonparametrics View into Deep Representations

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Authors

Michał Jamroż, Marcin Kurdziel, Mateusz Opala

Abstract

We investigate neural network representations from a probabilistic perspective. Specifically, we leverage Bayesian nonparametrics to construct models of neural activations in Convolutional Neural Networks (CNNs) and latent representations in Variational Autoencoders (VAEs). This allows us to formulate a tractable complexity measure for distributions of neural activations and to explore global structure of latent spaces learned by VAEs. We use this machinery to uncover how memorization and two common forms of regularization, i.e. dropout and input augmentation, influence representational complexity in CNNs. We demonstrate that networks that can exploit patterns in data learn vastly less complex representations than networks forced to memorize. We also show marked differences between effects of input augmentation and dropout, with the latter strongly depending on network width. Next, we investigate latent representations learned by standard $\beta$-VAEs and Maximum Mean Discrepancy (MMD) $\beta$-VAEs. We show that aggregated posterior in standard VAEs quickly collapses to the diagonal prior when regularization strength increases. MMD-VAEs, on the other hand, learn more complex posterior distributions, even with strong regularization. While this gives a richer sample space, MMD-VAEs do not exhibit independence of latent dimensions. Finally, we leverage our probabilistic models as an effective sampling strategy for latent codes, improving quality of samples in VAEs with rich posteriors.