Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability

Part of Advances in Neural Information Processing Systems 33 pre-proceedings (NeurIPS 2020)

Bibtex »Paper »Supplemental »

Bibtek download is not availble in the pre-proceeding


Christopher Frye, Colin Rowat, Ilya Feige


<p>Explaining AI systems is fundamental both to the development of high performing models and to the trust placed in them by their users. The Shapley framework for explainability has strength in its general applicability combined with its precise, rigorous foundation: it provides a common, model-agnostic language for AI explainability and uniquely satisfies a set of intuitive mathematical axioms. However, Shapley values are too restrictive in one significant regard: they ignore all causal structure in the data. We introduce a less restrictive framework, Asymmetric Shapley values (ASVs), which are rigorously founded on a set of axioms, applicable to any AI system, and can flexibly incorporate any causal structure known to be respected by the data. We demonstrate that ASVs can (i) improve model explanations by incorporating causal information, (ii) provide an unambiguous test for unfair discrimination in model predictions, (iii) enable sequentially incremental explanations in time-series models, and (iv) support feature-selection studies without the need for model retraining.</p>