What went wrong and when? Instance-wise feature importance for time-series black-box models

Part of Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

AuthorFeedback »Bibtex »MetaReview »Paper »Review »Supplemental »

Authors

Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K. Duvenaud, Anna Goldenberg

Abstract

Explanations of time series models are useful for high stakes applications like healthcare but have received little attention in machine learning literature. We propose FIT, a framework that evaluates the importance of observations for a multivariate time-series black-box model by quantifying the shift in the predictive distribution over time. FIT defines the importance of an observation based on its contribution to the distributional shift under a KL-divergence that contrasts the predictive distribution against a counterfactual where the rest of the features are unobserved. We also demonstrate the need to control for time-dependent distribution shifts. We compare with state-of-the-art baselines on simulated and real-world clinical data and demonstrate that our approach is superior in identifying important time points and observations throughout the time series.