Certifying Geometric Robustness of Neural Networks

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »

Authors

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, Martin Vechev

Abstract

<p>The use of neural networks in safety-critical computer vision systems calls for their robustness certification against natural geometric transformations (e.g., rotation, scaling). However, current certification methods target mostly norm-based pixel perturbations and cannot certify robustness against geometric transformations. In this work, we propose a new method to compute sound and asymptotically optimal linear relaxations for any composition of transformations. Our method is based on a novel combination of sampling and optimization. We implemented the method in a system called DeepG and demonstrated that it certifies significantly more complex geometric transformations than existing methods on both defended and undefended networks while scaling to large architectures.</p>