A Composable Specification Language for Reinforcement Learning Tasks

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »

Authors

Kishor Jothimurugan, Rajeev Alur, Osbert Bastani

Abstract

<p>Reinforcement learning is a promising approach for learning control policies for robot tasks. However, specifying complex tasks (e.g., with multiple objectives and safety constraints) can be challenging, since the user must design a reward function that encodes the entire task. Furthermore, the user often needs to manually shape the reward to ensure convergence of the learning algorithm. We propose a language for specifying complex control tasks, along with an algorithm that compiles specifications in our language into a reward function and automatically performs reward shaping. We implement our approach in a tool called SPECTRL, and show that it outperforms several state-of-the-art baselines.</p>