Self-Routing Capsule Networks

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental


Taeyoung Hahn, Myeongjang Pyeon, Gunhee Kim


Capsule networks have recently gained a great deal of interest as a new architecture of neural networks that can be more robust to input perturbations than similar-sized CNNs. Capsule networks have two major distinctions from the conventional CNNs: (i) each layer consists of a set of capsules that specialize in disjoint regions of the feature space and (ii) the routing-by-agreement coordinates connections between adjacent capsule layers. Although the routing-by-agreement is capable of filtering out noisy predictions of capsules by dynamically adjusting their influences, its unsupervised clustering nature causes two weaknesses: (i) high computational complexity and (ii) cluster assumption that may not hold in presence of heavy input noise. In this work, we propose a novel and surprisingly simple routing strategy called self-routing where each capsule is routed independently by its subordinate routing network. Therefore, the agreement between capsules is not required anymore but both poses and activations of upper-level capsules are obtained in a way similar to Mixture-of-Experts. Our experiments on CIFAR-10, SVHN and SmallNORB show that the self-routing performs more robustly against white-box adversarial attacks and affine transformations, requiring less computation.