Quaternion Knowledge Graph Embeddings

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback Bibtex MetaReview Metadata Paper Reviews Supplemental

Authors

SHUAI ZHANG, Yi Tay, Lina Yao, Qi Liu

Abstract

In this work, we move beyond the traditional complex-valued representations, introducing more expressive hypercomplex representations to model entities and relations for knowledge graph embeddings. More specifically, quaternion embeddings, hypercomplex-valued embeddings with three imaginary components, are utilized to represent entities. Relations are modelled as rotations in the quaternion space. The advantages of the proposed approach are: (1) Latent inter-dependencies (between all components) are aptly captured with Hamilton product, encouraging a more compact interaction between entities and relations; (2) Quaternions enable expressive rotation in four-dimensional space and have more degree of freedom than rotation in complex plane; (3) The proposed framework is a generalization of ComplEx on hypercomplex space while offering better geometrical interpretations, concurrently satisfying the key desiderata of relational representation learning (i.e., modeling symmetry, anti-symmetry and inversion). Experimental results demonstrate that our method achieves state-of-the-art performance on four well-established knowledge graph completion benchmarks.