Program Synthesis and Semantic Parsing with Learned Code Idioms

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »

Authors

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, Alex Polozov

Abstract

<p>Program synthesis of general-purpose source code from natural language specifications is challenging due to the need to reason about high-level patterns in the target program and low-level implementation details at the same time. In this work, we present Patois, a system that allows a neural program synthesizer to explicitly interleave high-level and low-level reasoning at every generation step. It accomplishes this by automatically mining common code idioms from a given corpus, incorporating them into the underlying language for neural synthesis, and training a tree-based neural synthesizer to use these idioms during code generation. We evaluate Patois on two complex semantic parsing datasets and show that using learned code idioms improves the synthesizer's accuracy.</p>