A General Theory of Equivariant CNNs on Homogeneous Spaces

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »

Authors

Taco S. Cohen, Mario Geiger, Maurice Weiler

Abstract

<p>We present a general theory of Group equivariant Convolutional Neural Networks (G-CNNs) on homogeneous spaces such as Euclidean space and the sphere. Feature maps in these networks represent fields on a homogeneous base space, and layers are equivariant maps between spaces of fields. The theory enables a systematic classification of all existing G-CNNs in terms of their symmetry group, base space, and field type. We also answer a fundamental question: what is the most general kind of equivariant linear map between feature spaces (fields) of given types? We show that such maps correspond one-to-one with generalized convolutions with an equivariant kernel, and characterize the space of such kernels.</p>