Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)
Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, Ping Ma
This paper studies the estimation of large-scale optimal transport maps (OTM), which is a well known challenging problem owing to the curse of dimensionality.
Existing literature approximates the large-scale OTM by a series of one-dimensional OTM problems through iterative random projection.
Such methods, however, suffer from slow or none convergence in practice due to the nature of randomly selected projection directions.
Instead, we propose an estimation method of large-scale OTM by combining the idea of projection pursuit regression and sufficient dimension reduction.
The proposed method, named projection pursuit Monge map (PPMM), adaptively selects the most informative'' projection direction in each iteration.
We theoretically show the proposed dimension reduction method can consistently estimate the most
informative'' projection direction in each iteration.
Furthermore, the PPMM algorithm weakly convergences to the target large-scale OTM in a reasonable number of steps.
Empirically, PPMM is computationally easy and converges fast.
We assess its finite sample performance through the applications of Wasserstein distance estimation and generative models.