Information-Theoretic Confidence Bounds for Reinforcement Learning

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »


Xiuyuan Lu, Benjamin Van Roy


<p>We integrate information-theoretic concepts into the design and analysis of optimistic algorithms and Thompson sampling. By making a connection between information-theoretic quantities and confidence bounds, we obtain results that relate the per-period performance of the agent with its information gain about the environment, thus explicitly characterizing the exploration-exploitation tradeoff. The resulting cumulative regret bound depends on the agent's uncertainty over the environment and quantifies the value of prior information. We show applicability of this approach to several environments, including linear bandits, tabular MDPs, and factored MDPs. These examples demonstrate the potential of a general information-theoretic approach for the design and analysis of reinforcement learning algorithms.</p>