Debiased Bayesian inference for average treatment effects

Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedback »Bibtex »Bibtex »MetaReview »Metadata »Paper »Reviews »Supplemental »


Kolyan Ray, Botond Szabo


<p>Bayesian approaches have become increasingly popular in causal inference problems due to their conceptual simplicity, excellent performance and in-built uncertainty quantification ('posterior credible sets'). We investigate Bayesian inference for average treatment effects from observational data, which is a challenging problem due to the missing counterfactuals and selection bias. Working in the standard potential outcomes framework, we propose a data-driven modification to an arbitrary (nonparametric) prior based on the propensity score that corrects for the first-order posterior bias, thereby improving performance. We illustrate our method for Gaussian process (GP) priors using (semi-)synthetic data. Our experiments demonstrate significant improvement in both estimation accuracy and uncertainty quantification compared to the unmodified GP, rendering our approach highly competitive with the state-of-the-art.</p>