Part of Advances in Neural Information Processing Systems 32 (NeurIPS 2019)

*Lingxiao Wang, Zhuoran Yang, Zhaoran Wang*

We study the statistical-computational tradeoffs in a high dimensional single index model $Y=f(X^\top\beta^*) +\epsilon$, where $f$ is unknown, $X$ is a Gaussian vector and $\beta^*$ is $s$-sparse with unit norm. When $\cov(Y,X^\top\beta^*)\neq 0$, \cite{plan2016generalized} shows that the direction and support of $\beta^*$ can be recovered using a generalized version of Lasso. In this paper, we investigate the case when this critical assumption fails to hold, where the problem becomes considerably harder. Using the statistical query model to characterize the computational cost of an algorithm, we show that when $\cov(Y,X^\top\beta^*)=0$ and $\cov(Y,(X^\top\beta^*)^2)>0$, no computationally tractable algorithms can achieve the information-theoretic limit of the minimax risk. This implies that one must pay an extra computational cost for the nonlinearity involved in the model.

Do not remove: This comment is monitored to verify that the site is working properly