Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)
Liheng Zhang, Marzieh Edraki, Guo-Jun Qi
In this paper, we formalize the idea behind capsule nets of using a capsule vector rather than a neuron activation to predict the label of samples. To this end, we propose to learn a group of capsule subspaces onto which an input feature vector is projected. Then the lengths of resultant capsules are used to score the probability of belonging to different classes. We train such a Capsule Projection Network (CapProNet) by learning an orthogonal projection matrix for each capsule subspace, and show that each capsule subspace is updated until it contains input feature vectors corresponding to the associated class. With low dimensionality of capsule subspace as well as an iterative method to estimate the matrix inverse, only a small negligible computing overhead is incurred to train the network. Experiment results on image datasets show the presented network can greatly improve the performance of state-of-the-art Resnet backbones by 10−20% with almost the same computing cost.