The Importance of Sampling inMeta-Reinforcement Learning

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex »Metadata »Paper »Reviews »


Bradly Stadie, Ge Yang, Rein Houthooft, Peter Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, Ilya Sutskever


We interpret meta-reinforcement learning as the problem of learning how to quickly find a good sampling distribution in a new environment. This interpretation leads to the development of two new meta-reinforcement learning algorithms: E-MAML and E-$\text{RL}^2$. Results are presented on a new environment we call `Krazy World': a difficult high-dimensional gridworld which is designed to highlight the importance of correctly differentiating through sampling distributions in meta-reinforcement learning. Further results are presented on a set of maze environments. We show E-MAML and E-$\text{RL}^2$ deliver better performance than baseline algorithms on both tasks.