Breaking the Span Assumption Yields Fast Finite-Sum Minimization

Part of Advances in Neural Information Processing Systems 31 (NeurIPS 2018)

Bibtex Metadata Paper Reviews Supplemental


Robert Hannah, Yanli Liu, Daniel O'Connor, Wotao Yin


In this paper, we show that SVRG and SARAH can be modified to be fundamentally faster than all of the other standard algorithms that minimize the sum of $n$ smooth functions, such as SAGA, SAG, SDCA, and SDCA without duality. Most finite sum algorithms follow what we call the ``span assumption'': Their updates are in the span of a sequence of component gradients chosen in a random IID fashion. In the big data regime, where the condition number $\kappa=O(n)$, the span assumption prevents algorithms from converging to an approximate solution of accuracy $\epsilon$ in less than $n\ln(1/\epsilon)$ iterations. SVRG and SARAH do not follow the span assumption since they are updated with a hybrid of full-gradient and component-gradient information. We show that because of this, they can be up to $\Omega(1+(\ln(n/\kappa))_+)$ times faster. In particular, to obtain an accuracy $\epsilon = 1/n^\alpha$ for $\kappa=n^\beta$ and $\alpha,\beta\in(0,1)$, modified SVRG requires $O(n)$ iterations, whereas algorithms that follow the span assumption require $O(n\ln(n))$ iterations. Moreover, we present lower bound results that show this speedup is optimal, and provide analysis to help explain why this speedup exists. With the understanding that the span assumption is a point of weakness of finite sum algorithms, future work may purposefully exploit this to yield faster algorithms in the big data regime.