Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)
Mikhail Yurochkin, XuanLong Nguyen, nikolaos Vasiloglou
We propose a Bayesian regression method that accounts for multi-way interactions of arbitrary orders among the predictor variables. Our model makes use of a factorization mechanism for representing the regression coefficients of interactions among the predictors, while the interaction selection is guided by a prior distribution on random hypergraphs, a construction which generalizes the Finite Feature Model. We present a posterior inference algorithm based on Gibbs sampling, and establish posterior consistency of our regression model. Our method is evaluated with extensive experiments on simulated data and demonstrated to be able to identify meaningful interactions in applications in genetics and retail demand forecasting.