Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

*Tao Sun, Robert Hannah, Wotao Yin*

<p>Asynchronous-parallel algorithms have the potential to vastly speed up algorithms by eliminating costly synchronization. However, our understanding of these algorithms is limited because the current convergence theory of asynchronous block coordinate descent algorithms is based on somewhat unrealistic assumptions. In particular, the age of the shared optimization variables being used to update blocks is assumed to be independent of the block being updated. Additionally, it is assumed that the updates are applied to randomly chosen blocks. In this paper, we argue that these assumptions either fail to hold or will imply less efficient implementations. We then prove the convergence of asynchronous-parallel block coordinate descent under more realistic assumptions, in particular, always without the independence assumption. The analysis permits both the deterministic (essentially) cyclic and random rules for block choices. Because a bound on the asynchronous delays may or may not be available, we establish convergence for both bounded delays and unbounded delays. The analysis also covers nonconvex, weakly convex, and strongly convex functions. The convergence theory involves a Lyapunov function that directly incorporates both objective progress and delays. A continuous-time ODE is provided to motivate the construction at a high level.</p>

Do not remove: This comment is monitored to verify that the site is working properly