K-Medoids For K-Means Seeding

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex Metadata Paper Reviews

Authors

James Newling, François Fleuret

Abstract

We show experimentally that the algorithm CLARANS of Ng and Han (1994) finds better K-medoids solutions than the Voronoi iteration algorithm of Hastie et al. (2001). This finding, along with the similarity between the Voronoi iteration algorithm and Lloyd's K-means algorithm, motivates us to use CLARANS as a K-means initializer. We show that CLARANS outperforms other algorithms on 23/23 datasets with a mean decrease over k-means++ of 30% for initialization mean squared error (MSE) and 3% for final MSE. We introduce algorithmic improvements to CLARANS which improve its complexity and runtime, making it a viable initialization scheme for large datasets.