Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)
Mark Rowland, Adrian Weller
The idea of uprooting and rerooting graphical models was introduced specifically for binary pairwise models by Weller (2016) as a way to transform a model to any of a whole equivalence class of related models, such that inference on any one model yields inference results for all others. This is very helpful since inference, or relevant bounds, may be much easier to obtain or more accurate for some model in the class. Here we introduce methods to extend the approach to models with higher-order potentials and develop theoretical insights. In particular, we show that the triplet-consistent polytope TRI is unique in being `universally rooted'. We demonstrate empirically that rerooting can significantly improve accuracy of methods of inference for higher-order models at negligible computational cost.