Safe Adaptive Importance Sampling

Part of Advances in Neural Information Processing Systems 30 (NIPS 2017)

Bibtex »Metadata »Paper »Reviews »Supplemental »

Authors

Sebastian U. Stich, Anant Raj, Martin Jaggi

Abstract

<p>Importance sampling has become an indispensable strategy to speed up optimization algorithms for large-scale applications. Improved adaptive variants -- using importance values defined by the complete gradient information which changes during optimization -- enjoy favorable theoretical properties, but are typically computationally infeasible. In this paper we propose an efficient approximation of gradient-based sampling, which is based on safe bounds on the gradient. The proposed sampling distribution is (i) provably the \emph{best sampling} with respect to the given bounds, (ii) always better than uniform sampling and fixed importance sampling and (iii) can efficiently be computed -- in many applications at negligible extra cost. The proposed sampling scheme is generic and can easily be integrated into existing algorithms. In particular, we show that coordinate-descent (CD) and stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel scheme. The proven efficiency of the proposed sampling is verified by extensive numerical testing.</p>