Can Peripheral Representations Improve Clutter Metrics on Complex Scenes?

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews Supplemental

Authors

Arturo Deza, Miguel Eckstein

Abstract

Previous studies have proposed image-based clutter measures that correlate with human search times and/or eye movements. However, most models do not take into account the fact that the effects of clutter interact with the foveated nature of the human visual system: visual clutter further from the fovea has an increasing detrimental influence on perception. Here, we introduce a new foveated clutter model to predict the detrimental effects in target search utilizing a forced fixation search task. We use Feature Congestion (Rosenholtz et al.) as our non foveated clutter model, and we stack a peripheral architecture on top of Feature Congestion for our foveated model. We introduce the Peripheral Integration Feature Congestion (PIFC) coefficient, as a fundamental ingredient of our model that modulates clutter as a non-linear gain contingent on eccentricity. We finally show that Foveated Feature Congestion (FFC) clutter scores (r(44) = −0.82 ± 0.04, p < 0.0001) correlate better with target detection (hit rate) than regular Feature Congestion (r(44) = −0.19 ± 0.13, p = 0.0774) in forced fixation search; and we extend foveation to other clutter models showing stronger correlations in all cases. Thus, our model allows us to enrich clutter perception research by computing fixation specific clutter maps. Code for building peripheral representations is available.