Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)
Dan Garber, Dan Garber, Ofer Meshi
Recently, several works have shown that natural modifications of the classical conditional gradient method (aka Frank-Wolfe algorithm) for constrained convex optimization, provably converge with a linear rate when the feasible set is a polytope, and the objective is smooth and strongly-convex. However, all of these results suffer from two significant shortcomings: i) large memory requirement due to the need to store an explicit convex decomposition of the current iterate, and as a consequence, large running-time overhead per iteration ii) the worst case convergence rate depends unfavorably on the dimension In this work we present a new conditional gradient variant and a corresponding analysis that improves on both of the above shortcomings. In particular, both memory and computation overheads are only linear in the dimension, and in addition, in case the optimal solution is sparse, the new convergence rate replaces a factor which is at least linear in the dimension in previous works, with a linear dependence on the number of non-zeros in the optimal solution At the heart of our method, and corresponding analysis, is a novel way to compute decomposition-invariant away-steps. While our theoretical guarantees do not apply to any polytope, they apply to several important structured polytopes that capture central concepts such as paths in graphs, perfect matchings in bipartite graphs, marginal distributions that arise in structured prediction tasks, and more. Our theoretical findings are complemented by empirical evidence that shows that our method delivers state-of-the-art performance.