On the Recursive Teaching Dimension of VC Classes

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

Bibtex Metadata Paper Reviews Supplemental


Xi Chen, Xi Chen, Yu Cheng, Bo Tang


The recursive teaching dimension (RTD) of a concept class $C \subseteq \{0, 1\}^n$, introduced by Zilles et al. [ZLHZ11], is a complexity parameter measured by the worst-case number of labeled examples needed to learn any target concept of $C$ in the recursive teaching model. In this paper, we study the quantitative relation between RTD and the well-known learning complexity measure VC dimension (VCD), and improve the best known upper and (worst-case) lower bounds on the recursive teaching dimension with respect to the VC dimension. Given a concept class $C \subseteq \{0, 1\}^n$ with $VCD(C) = d$, we first show that $RTD(C)$ is at most $d 2^{d+1}$. This is the first upper bound for $RTD(C)$ that depends only on $VCD(C)$, independent of the size of the concept class $|C|$ and its~domain size $n$. Before our work, the best known upper bound for $RTD(C)$ is $O(d 2^d \log \log |C|)$, obtained by Moran et al. [MSWY15]. We remove the $\log \log |C|$ factor. We also improve the lower bound on the worst-case ratio of $RTD(C)$ to $VCD(C)$. We present a family of classes $\{ C_k \}_{k \ge 1}$ with $VCD(C_k) = 3k$ and $RTD(C_k)=5k$, which implies that the ratio of $RTD(C)$ to $VCD(C)$ in the worst case can be as large as $5/3$. Before our work, the largest ratio known was $3/2$ as obtained by Kuhlmann [Kuh99]. Since then, no finite concept class $C$ has been known to satisfy $RTD(C) > (3/2) VCD(C)$.