#### Completely random measures for modelling block-structured sparse networks

Part of Advances in Neural Information Processing Systems 29 (NIPS 2016)

#### Authors

*Tue Herlau, Mikkel N. Schmidt, Morten Mørup*

#### Abstract

<p>Statistical methods for network data often parameterize the edge-probability by attributing latent traits such as block structure to the vertices and assume exchangeability in the sense of the Aldous-Hoover representation theorem. These assumptions are however incompatible with traits found in real-world networks such as a power-law degree-distribution. Recently, Caron & Fox (2014) proposed the use of a different notion of exchangeability after Kallenberg (2005) and obtained a network model which permits edge-inhomogeneity, such as a power-law degree-distribution whilst retaining desirable statistical properties. However, this model does not capture latent vertex traits such as block-structure. In this work we re-introduce the use of block-structure for network models obeying Kallenberg’s notion of exchangeability and thereby obtain a collapsed model which both admits the inference of block-structure and edge inhomogeneity. We derive a simple expression for the likelihood and an efficient sampling method. The obtained model is not significantly more difficult to implement than existing approaches to block-modelling and performs well on real network datasets.</p>