Efficient Minimax Strategies for Square Loss Games

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex Metadata Paper Reviews Supplemental

Authors

Wouter M. Koolen, Alan Malek, Peter L. Bartlett

Abstract

We consider online prediction problems where the loss between the prediction and the outcome is measured by the squared Euclidean distance and its generalization, the squared Mahalanobis distance. We derive the minimax solutions for the case where the prediction and action spaces are the simplex (this setup is sometimes called the Brier game) and the $\ell_2$ ball (this setup is related to Gaussian density estimation). We show that in both cases the value of each sub-game is a quadratic function of a simple statistic of the state, with coefficients that can be efficiently computed using an explicit recurrence relation. The resulting deterministic minimax strategy and randomized maximin strategy are linear functions of the statistic.