PAC-Bayesian AUC classification and scoring

Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

Bibtex »Metadata »Paper »Reviews »Supplemental »

Authors

James Ridgway, Pierre Alquier, Nicolas Chopin, Feng Liang

Abstract

<p>We develop a scoring and classification procedure based on the PAC-Bayesian approach and the AUC (Area Under Curve) criterion. We focus initially on the class of linear score functions. We derive PAC-Bayesian non-asymptotic bounds for two types of prior for the score parameters: a Gaussian prior, and a spike-and-slab prior; the latter makes it possible to perform feature selection. One important advantage of our approach is that it is amenable to powerful Bayesian computational tools. We derive in particular a Sequential Monte Carlo algorithm, as an efficient method which may be used as a gold standard, and an Expectation-Propagation algorithm, as a much faster but approximate method. We also extend our method to a class of non-linear score functions, essentially leading to a nonparametric procedure, by considering a Gaussian process prior.</p>