Part of Advances in Neural Information Processing Systems 27 (NIPS 2014)

*Nishant A. Mehta, Robert C. Williamson*

Empirical risk minimization (ERM) is a fundamental learning rule for statistical learning problems where the data is generated according to some unknown distribution $\mathsf{P}$ and returns a hypothesis $f$ chosen from a fixed class $\mathcal{F}$ with small loss $\ell$. In the parametric setting, depending upon $(\ell, \mathcal{F},\mathsf{P})$ ERM can have slow $(1/\sqrt{n})$ or fast $(1/n)$ rates of convergence of the excess risk as a function of the sample size $n$. There exist several results that give sufficient conditions for fast rates in terms of joint properties of $\ell$, $\mathcal{F}$, and $\mathsf{P}$, such as the margin condition and the Bernstein condition. In the non-statistical prediction with expert advice setting, there is an analogous slow and fast rate phenomenon, and it is entirely characterized in terms of the mixability of the loss $\ell$ (there being no role there for $\mathcal{F}$ or $\mathsf{P}$). The notion of stochastic mixability builds a bridge between these two models of learning, reducing to classical mixability in a special case. The present paper presents a direct proof of fast rates for ERM in terms of stochastic mixability of $(\ell,\mathcal{F}, \mathsf{P})$, and in so doing provides new insight into the fast-rates phenomenon. The proof exploits an old result of Kemperman on the solution to the general moment problem. We also show a partial converse that suggests a characterization of fast rates for ERM in terms of stochastic mixability is possible.

Do not remove: This comment is monitored to verify that the site is working properly