Part of Advances in Neural Information Processing Systems 25 (NIPS 2012)
He He, Jason Eisner, Hal Daume
Imitation Learning has been shown to be successful in solving many challenging real-world problems. Some recent approaches give strong performance guarantees by training the policy iteratively. However, it is important to note that these guarantees depend on how well the policy we found can imitate the oracle on the training data. When there is a substantial difference between the oracle's ability and the learner's policy space, we may fail to find a policy that has low error on the training set. In such cases, we propose to use a coach that demonstrates easy-to-learn actions for the learner and gradually approaches the oracle. By a reduction of learning by demonstration to online learning, we prove that coaching can yield a lower regret bound than using the oracle. We apply our algorithm to a novel cost-sensitive dynamic feature selection problem, a hard decision problem that considers a user-specified accuracy-cost trade-off. Experimental results on UCI datasets show that our method outperforms state-of-the-art imitation learning methods in dynamic features selection and two static feature selection methods.