Hierarchical Matching Pursuit for Image Classification: Architecture and Fast Algorithms

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper

Authors

Liefeng Bo, Xiaofeng Ren, Dieter Fox

Abstract

Extracting good representations from images is essential for many computer vision tasks. In this paper, we propose hierarchical matching pursuit (HMP), which builds a feature hierarchy layer-by-layer using an efficient matching pursuit encoder. It includes three modules: batch (tree) orthogonal matching pursuit, spatial pyramid max pooling, and contrast normalization. We investigate the architecture of HMP, and show that all three components are critical for good performance. To speed up the orthogonal matching pursuit, we propose a batch tree orthogonal matching pursuit that is particularly suitable to encode a large number of observations that share the same large dictionary. HMP is scalable and can efficiently handle full-size images. In addition, HMP enables linear support vector machines (SVM) to match the performance of nonlinear SVM while being scalable to large datasets. We compare HMP with many state-of-the-art algorithms including convolutional deep belief networks, SIFT based single layer sparse coding, and kernel based feature learning. HMP consistently yields superior accuracy on three types of image classification problems: object recognition (Caltech-101), scene recognition (MIT-Scene), and static event recognition (UIUC-Sports).