Environmental statistics and the trade-off between model-based and TD learning in humans

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper Supplemental

Authors

Dylan Simon, Nathaniel Daw

Abstract

There is much evidence that humans and other animals utilize a combination of model-based and model-free RL methods. Although it has been proposed that these systems may dominate according to their relative statistical efficiency in different circumstances, there is little specific evidence -- especially in humans -- as to the details of this trade-off. Accordingly, we examine the relative performance of different RL approaches under situations in which the statistics of reward are differentially noisy and volatile. Using theory and simulation, we show that model-free TD learning is relatively most disadvantaged in cases of high volatility and low noise. We present data from a decision-making experiment manipulating these parameters, showing that humans shift learning strategies in accord with these predictions. The statistical circumstances favoring model-based RL are also those that promote a high learning rate, which helps explain why, in psychology, the distinction between these strategies is traditionally conceived in terms of rule-based vs. incremental learning.