Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)
Francis Bach
We consider a class of sparsity-inducing regularization terms based on submodular functions. While previous work has focused on non-decreasing functions, we explore symmetric submodular functions and their \lova extensions. We show that the Lovasz extension may be seen as the convex envelope of a function that depends on level sets (i.e., the set of indices whose corresponding components of the underlying predictor are greater than a given constant): this leads to a class of convex structured regularization terms that impose prior knowledge on the level sets, and not only on the supports of the underlying predictors. We provide a unified set of optimization algorithms, such as proximal operators, and theoretical guarantees (allowed level sets and recovery conditions). By selecting specific submodular functions, we give a new interpretation to known norms, such as the total variation; we also define new norms, in particular ones that are based on order statistics with application to clustering and outlier detection, and on noisy cuts in graphs with application to change point detection in the presence of outliers.