Bayesian Spike-Triggered Covariance Analysis

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper Supplemental

Authors

Il Memming Park, Jonathan Pillow

Abstract

Neurons typically respond to a restricted number of stimulus features within the high-dimensional space of natural stimuli. Here we describe an explicit model-based interpretation of traditional estimators for a neuron's multi-dimensional feature space, which allows for several important generalizations and extensions. First, we show that traditional estimators based on the spike-triggered average (STA) and spike-triggered covariance (STC) can be formalized in terms of the "expected log-likelihood" of a Linear-Nonlinear-Poisson (LNP) model with Gaussian stimuli. This model-based formulation allows us to define maximum-likelihood and Bayesian estimators that are statistically consistent and efficient in a wider variety of settings, such as with naturalistic (non-Gaussian) stimuli. It also allows us to employ Bayesian methods for regularization, smoothing, sparsification, and model comparison, and provides Bayesian confidence intervals on model parameters. We describe an empirical Bayes method for selecting the number of features, and extend the model to accommodate an arbitrary elliptical nonlinear response function, which results in a more powerful and more flexible model for feature space inference. We validate these methods using neural data recorded extracellularly from macaque primary visual cortex.