Modelling Genetic Variations using Fragmentation-Coagulation Processes

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper

Authors

Yee Teh, Charles Blundell, Lloyd Elliott

Abstract

We propose a novel class of Bayesian nonparametric models for sequential data called fragmentation-coagulation processes (FCPs). FCPs model a set of sequences using a partition-valued Markov process which evolves by splitting and merging clusters. An FCP is exchangeable, projective, stationary and reversible, and its equilibrium distributions are given by the Chinese restaurant process. As opposed to hidden Markov models, FCPs allow for flexible modelling of the number of clusters, and they avoid label switching non-identifiability problems. We develop an efficient Gibbs sampler for FCPs which uses uniformization and the forward-backward algorithm. Our development of FCPs is motivated by applications in population genetics, and we demonstrate the utility of FCPs on problems of genotype imputation with phased and unphased SNP data.