Active Classification based on Value of Classifier

Part of Advances in Neural Information Processing Systems 24 (NIPS 2011)

Bibtex Metadata Paper SpotlightSlide

Authors

Tianshi Gao, Daphne Koller

Abstract

Modern classification tasks usually involve many class labels and can be informed by a broad range of features. Many of these tasks are tackled by constructing a set of classifiers, which are then applied at test time and then pieced together in a fixed procedure determined in advance or at training time. We present an active classification process at the test time, where each classifier in a large ensemble is viewed as a potential observation that might inform our classification process. Observations are then selected dynamically based on previous observations, using a value-theoretic computation that balances an estimate of the expected classification gain from each observation as well as its computational cost. The expected classification gain is computed using a probabilistic model that uses the outcome from previous observations. This active classification process is applied at test time for each individual test instance, resulting in an efficient instance-specific decision path. We demonstrate the benefit of the active scheme on various real-world datasets, and show that it can achieve comparable or even higher classification accuracy at a fraction of the computational costs of traditional methods.