Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper


Peggy Series, David Reichert, Amos J. Storkey


The Charles Bonnet Syndrome (CBS) is characterized by complex vivid visual hallucinations in people with, primarily, eye diseases and no other neurological pathology. We present a Deep Boltzmann Machine model of CBS, exploring two core hypotheses: First, that the visual cortex learns a generative or predictive model of sensory input, thus explaining its capability to generate internal imagery. And second, that homeostatic mechanisms stabilize neuronal activity levels, leading to hallucinations being formed when input is lacking. We reproduce a variety of qualitative findings in CBS. We also introduce a modification to the DBM that allows us to model a possible role of acetylcholine in CBS as mediating the balance of feed-forward and feed-back processing. Our model might provide new insights into CBS and also demonstrates that generative frameworks are promising as hypothetical models of cortical learning and perception.