Gaussian sampling by local perturbations

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper


George Papandreou, Alan L. Yuille


We present a technique for exact simulation of Gaussian Markov random fields (GMRFs), which can be interpreted as locally injecting noise to each Gaussian factor independently, followed by computing the mean/mode of the perturbed GMRF. Coupled with standard iterative techniques for the solution of symmetric positive definite systems, this yields a very efficient sampling algorithm with essentially linear complexity in terms of speed and memory requirements, well suited to extremely large scale probabilistic models. Apart from synthesizing data under a Gaussian model, the proposed technique directly leads to an efficient unbiased estimator of marginal variances. Beyond Gaussian models, the proposed algorithm is also very useful for handling highly non-Gaussian continuously-valued MRFs such as those arising in statistical image modeling or in the first layer of deep belief networks describing real-valued data, where the non-quadratic potentials coupling different sites can be represented as finite or infinite mixtures of Gaussians with the help of local or distributed latent mixture assignment variables. The Bayesian treatment of such models most naturally involves a block Gibbs sampler which alternately draws samples of the conditionally independent latent mixture assignments and the conditionally multivariate Gaussian continuous vector and we show that it can directly benefit from the proposed methods.