SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper


Sylvain Chevallier, Hél\`ene Paugam-moisy, Michele Sebag


Many complex systems, ranging from neural cell assemblies to insect societies, involve and rely on some division of labor. How to enforce such a division in a decentralized and distributed way, is tackled in this paper, using a spiking neuron network architecture. Specifically, a spatio-temporal model called SpikeAnts is shown to enforce the emergence of synchronized activities in an ant colony. Each ant is modelled from two spiking neurons; the ant colony is a sparsely connected spiking neuron network. Each ant makes its decision (among foraging, sleeping and self-grooming) from the competition between its two neurons, after the signals received from its neighbor ants. Interestingly, three types of temporal patterns emerge in the ant colony: asynchronous, synchronous, and synchronous periodic foraging activities - similar to the actual behavior of some living ant colonies. A phase diagram of the emergent activity patterns with respect to two control parameters, respectively accounting for ant sociability and receptivity, is presented and discussed.