Causal discovery in multiple models from different experiments

Part of Advances in Neural Information Processing Systems 23 (NIPS 2010)

Bibtex Metadata Paper


Tom Claassen, Tom Heskes


A long-standing open research problem is how to use information from different experiments, including background knowledge, to infer causal relations. Recent developments have shown ways to use multiple data sets, provided they originate from identical experiments. We present the MCI-algorithm as the first method that can infer provably valid causal relations in the large sample limit from different experiments. It is fast, reliable and produces very clear and easily interpretable output. It is based on a result that shows that constraint-based causal discovery is decomposable into a candidate pair identification and subsequent elimination step that can be applied separately from different models. We test the algorithm on a variety of synthetic input model sets to assess its behavior and the quality of the output. The method shows promising signs that it can be adapted to suit causal discovery in real-world application areas as well, including large databases.