An Additive Latent Feature Model for Transparent Object Recognition

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper


Mario Fritz, Gary Bradski, Sergey Karayev, Trevor Darrell, Michael Black


Existing methods for recognition of object instances and categories based on quantized local features can perform poorly when local features exist on transparent surfaces, such as glass or plastic objects. There are characteristic patterns to the local appearance of transparent objects, but they may not be well captured by distances to individual examples or by a local pattern codebook obtained by vector quantization. The appearance of a transparent patch is determined in part by the refraction of a background pattern through a transparent medium: the energy from the background usually dominates the patch appearance. We model transparent local patch appearance using an additive model of latent factors: background factors due to scene content, and factors which capture a local edge energy distribution characteristic of the refraction. We implement our method using a novel LDA-SIFT formulation which performs LDA prior to any vector quantization step; we discover latent topics which are characteristic of particular transparent patches and quantize the SIFT space into transparent visual words according to the latent topic dimensions. No knowledge of the background scene is required at test time; we show examples recognizing transparent glasses in a domestic environment.