Linearly constrained Bayesian matrix factorization for blind source separation

Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)

Bibtex Metadata Paper

Authors

Mikkel Schmidt

Abstract

We present a general Bayesian approach to probabilistic matrix factorization subject to linear constraints. The approach is based on a Gaussian observation model and Gaussian priors with bilinear equality and inequality constraints. We present an efficient Markov chain Monte Carlo inference procedure based on Gibbs sampling. Special cases of the proposed model are Bayesian formulations of non-negative matrix factorization and factor analysis. The method is evaluated on a blind source separation problem. We demonstrate that our algorithm can be used to extract meaningful and interpretable features that are remarkably different from features extracted using existing related matrix factorization techniques.