Part of Advances in Neural Information Processing Systems 22 (NIPS 2009)
Jarno Vanhatalo, Pasi Jylänki, Aki Vehtari
In the Gaussian process regression the observation model is commonly assumed to be Gaussian, which is convenient in computational perspective. However, the drawback is that the predictive accuracy of the model can be significantly compromised if the observations are contaminated by outliers. A robust observation model, such as the Student-t distribution, reduces the influence of outlying observations and improves the predictions. The problem, however, is the analytically intractable inference. In this work, we discuss the properties of a Gaussian process regression model with the Student-t likelihood and utilize the Laplace approximation for approximate inference. We compare our approach to a variational approximation and a Markov chain Monte Carlo scheme, which utilize the commonly used scale mixture representation of the Student-t distribution.