Shape-Based Object Localization for Descriptive Classification

Part of Advances in Neural Information Processing Systems 21 (NIPS 2008)

Bibtex Metadata Paper


Geremy Heitz, Gal Elidan, Benjamin Packer, Daphne Koller


Discriminative tasks, including object categorization and detection, are central components of high-level computer vision. Sometimes, however, we are interested in more refined aspects of the object in an image, such as pose or particular regions. In this paper we develop a method (LOOPS) for learning a shape and image feature model that can be trained on a particular object class, and used to outline instances of the class in novel images. Furthermore, while the training data consists of uncorresponded outlines, the resulting LOOPS model contains a set of landmark points that appear consistently across instances, and can be accurately localized in an image. Our model achieves state-of-the-art results in precisely outlining objects that exhibit large deformations and articulations in cluttered natural images. These localizations can then be used to address a range of tasks, including descriptive classification, search, and clustering.