Part of Advances in Neural Information Processing Systems 19 (NIPS 2006)
Boaz Nadler, Meirav Galun
Spectral clustering methods are common graph-based approaches to clustering of data. Spectral clustering algorithms typically start from local information encoded in a weighted graph on the data and cluster according to the global eigenvectors of the corresponding (normalized) similarity matrix. One contribution of this paper is to present fundamental limitations of this general local to global approach. We show that based only on local information, the normalized cut functional is not a suitable measure for the quality of clustering. Further, even with a suitable similarity measure, we show that the first few eigenvectors of such adjacency matrices cannot successfully cluster datasets that contain structures at different scales of size and density. Based on these findings, a second contribution of this paper is a novel diffusion based measure to evaluate the coherence of individual clusters. Our measure can be used in conjunction with any bottom-up graph-based clustering method, it is scale-free and can determine coherent clusters at all scales. We present both synthetic examples and real image segmentation problems where various spectral clustering algorithms fail. In contrast, using this coherence measure finds the expected clusters at all scales. Keywords: Clustering, kernels, learning theory.