Group and Topic Discovery from Relations and Their Attributes

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper


Xuerui Wang, Natasha Mohanty, Andrew McCallum


We present a probabilistic generative model of entity relationships and their attributes that simultaneously discovers groups among the entities and topics among the corresponding textual attributes. Block-models of relationship data have been studied in social network analysis for some time. Here we simultaneously cluster in several modalities at once, incor- porating the attributes (here, words) associated with certain relationships. Significantly, joint inference allows the discovery of topics to be guided by the emerging groups, and vice-versa. We present experimental results on two large data sets: sixteen years of bills put before the U.S. Sen- ate, comprising their corresponding text and voting records, and thirteen years of similar data from the United Nations. We show that in compari- son with traditional, separate latent-variable models for words, or Block- structures for votes, the Group-Topic model’s joint inference discovers more cohesive groups and improved topics.