Top-Down Control of Visual Attention: A Rational Account

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper

Authors

Michael Shettel, Shaun Vecera, Michael C. Mozer

Abstract

Theories of visual attention commonly posit that early parallel processes extract con- spicuous features such as color contrast and motion from the visual field. These features are then combined into a saliency map, and attention is directed to the most salient regions first. Top-down attentional control is achieved by modulating the contribution of different feature types to the saliency map. A key source of data concerning attentional control comes from behavioral studies in which the effect of recent experience is exam- ined as individuals repeatedly perform a perceptual discrimination task (e.g., “what shape is the odd-colored object?”). The robust finding is that repetition of features of recent trials (e.g., target color) facilitates performance. We view this facilitation as an adaptation to the statistical structure of the environment. We propose a probabilistic model of the environment that is updated after each trial. Under the assumption that attentional control operates so as to make performance more efficient for more likely environmental states, we obtain parsimonious explanations for data from four different experiments. Further, our model provides a rational explanation for why the influence of past experience on attentional control is short lived.